

Stock Assessment Of The Torres Strait Spanish Mackerel Fishery

Gavin A. Begg[1], Carla Chia-Ming Chen [1], Michael F. O'Neill[2], Darren Rose[3], Sue Helmke3

 CRC Reef Research Centre and School of Tropical Environment Studies and Geography, James Cook University, QLD, 4811, Australia.
 Southern Fisheries Centre, Sustainable Fisheries, Animal Science, Department of Primary Industries and Fisheries, Deception Bay, QLD, 4508, Australia.

3 Northern Fisheries Centre, Department of Primary Industries and Fisheries, Cairns, QLD, 4870, Australia.

Location

- Lat 9s-11.5 s
- Long 141.5E-144.5E
- Between the Cape York and PNG
- Divided into 6 regions (using AFMA 30" Grid)
 - Bramble Cay
 - Central Islands
 - Easter Islands
 - Northern Islands
 - Southern Islands
 - Western Islands

Background: Fishery Description

- Commercial:
 - Commence: 1930s
 - Increase from 1950
 - From 2003, non-islander licenses is limited to 17
 - Operation
 - Small dories (5-6 m) operated from larger primary vessel (9-16m)
 - Trolling, Hand lines
 - 2 sessions (am, pm)
- Islanders (Commercial and Subsistence):
 - Livelihood for traditional, culture and subsistence
 - Main Independent financial resources
 - Operated from the Islands
 - Community and council freezer: Murray, Darnley and York Island
- Illegal Foreign Fishing Fleets
 - Taiwanese gill net fishers
 - Indonesian fishers
 - Effect unknown

Year

2003

004

Background: Management History

1985 Torres Strait Treaty.

Management

Torres Strait Fisheries Act dictates joint authority and management of Spanish mackerel fishery between Australia and Papua New Guinea, including catch sharing arrangements.

Establishment of Torres Strait Protected Zone Joint Authority (TSPZJA) to regulate all fisheries in Torres Strait.

Transferable licences issued to non traditional inhabitants who could demonstrate history and commitment to fishing in Torres Strait.

Licences subject to strict vessel replacement regulations related to vessel size. Vessels restricted to less than 20 m in length.

Traditional inhabitants could obtain the commercial fishing license from TPZJA. Ban on netting of Spanish mackerel.

Minimum legal size of 45 cm TL for Spanish mackerel.

- 1988 SM01 logbook introduced (compulsory for non-Islander and PNG fishers)¹.
- 1990 SM02 logbook introduced (compulsory for non-Islander and PNG fishers).
- 1998 Fishing methods restricted to trolling, hand-lining and drop-lining.

Licence holders allowed to carry no more than 50 kg of other finfish besides mackerel.

Minimum legal size of 45 cm TL for all mackerel.

1999 Traditional inhabitants required to hold a current Torres Strait Traditional Inhabitant Fishing Boat Licence (TIB) or Torres Strait Fishing Boat Licence for commercial fishing in TSPZ.

Fishery expanded to include spotted, school, shark and grey mackerel.

Transfer of fisheries management jurisdiction from Queensland to PZJA.

TSF01 logbook introduced (compulsory for non-Islander and PNG fishers) Islander docket book introduced.

Minimum legal size increased to 75 cm TL for Spanish mackerel.

Background: Research History

Year	Author	Research
1943	Munro	Revision of Australian Scomberomorus species, including Spanish mackerel.
1974	Lewis <i>et al.</i>	Spawning season of Scomberomorus commerson in Papua New Guinea.
1984	Collette and Russo	Morphology, systematics and biology of <i>Scomberomorus</i> species, including Spanish mackerel.
1985	Chapau and Opnai	Taiwanese gill net fishing in the Gulf of Papua.
1985	McPherson	Preliminary review of Torres Strait Spanish mackerel fishery.
1985	Shaklee	Genetic variation and population structure of Torres Strait Spanish Mackerel.
1988	McPherson	Spanish mackerel stock structure and movements in Torres Strait.
1992	McPherson	Age and growth of Spanish mackerel in north-eastern Queensland waters including Torres strait.
1994	O'Brien	Preliminary assessment of Torres Strait Spanish mackerel fishery.
1997	Haywood and Die	Assessment of Torres Strait Spanish mackerel fishery. Due to poor data quality assessment not conducted; recommendations made concerning data issues.
1998	Williams and O'Brien	Assessment of Torres Strait Spanish mackerel fishery.
2000	Lilly	Review of the SM02 logbook for Spanish mackerel fishery.
2001	Lester <i>et al.</i>	Stock structure of Spanish mackerel in northern Australia based on parasites.
2002	Lilly	Historical catch and effort data for the Spanish mackerel fishery.
2003	Moore <i>et al.</i>	Stock structure of Spanish mackerel in northern Australia based on parasites.
2004	Begg and Murchie	Islander community freezers catch data for the eastern Torres Strait.
2004	Ovenden	Population genetic analysis of Spanish mackerel stock structure in the Gulf of Carpentaria and Torres Strait
2005	Buckworth et al.	Stock structure of Spanish mackerel in northern Australia.
In prep	Rose et al.	DPI&F Long Term Monitoring Program of Torres Strait Spanish mackerel.
- Present	Begg et al.	Assessment of Torres Strait Spanish mackerel fishery.

Background: Monitoring History

- Monitored by
 - AFMA and QDPI&F using commercial nonislanders compulsory logbooks,
 - AFMA Islander docket book (2004)
 - a part of QDPI&F LTMP project
 - AFMA Voluntary logbook recording sex and length (2004)
 - CRC Sex, age and length collection (2005)

Objectives

- Describe the current trends and the status of fishery
- Advice the monitoring, reporting and further research required

Outline

- Biology
- Fishery and Total Catch
- Catch Rate (CPUE)
- Stock assessment model
- Management Strategy Evaluation
- Monitoring
- Discussion

Biology

- Data: QDPI&F LTMP and AFMA Volunteering logbook
 - Age was read by 3 individuals and adjusted
 - 2000-2002
 - <14 days in the October around Bramble Cay
 - Gonad was staged using Macroscopic staging scheme (stages 4-9 indicates mature females)
- Biology
 - Oldest age: 12 yrs old (128cm, unknown sex)
 - female: Oldest, 10 yrs old (137cm), largest 168 cm (8 yrs old) and heaviest 26 Kg (Age unknown, 161cm)
 - male: Oldest, 10 yrs old (12, 129cm), largest 133 cm (5,6 yrs old) and heaviest 15 Kg (6 yrs old)
 - Female grow faster than male (K female: 0.16, male:0.12) and female tends to be large than male (Lmax female:159 and male: 144 cm TL)
 - Fecundity: Gonad weight as indication (on average, 1 kg body mass 135g gonad wt)
 - Maturity: (Mackie 2002)
 - Female: 60% matured at 1+, 99% matured at 4+
 - Male: 60% matured at 1+, 99% matured at 3+

Length frequency distribution

Age Frequency Distribution

Fishery: Commercial Non-Islanders

- All species of mackerel
 - Large proportion of Spanish mackerel (S. commerson)
 - Small proportion of grey, school, shark mackerels (0.7-6.3 t)
- Mackerels catches from
 - Mackerel Fishers
 - Dual Fisher (both Mackerel and Reef line license holder)
 - Reef line fishers
 Rock lobster and Prawn

Fishing	Non-Island	ler Torres Stra	ait Commercia	I Fishery Total	Mackerel
			Catch (t)		
year	Mackerel	Dual	Reef	Lobster	Prawn
1989	184	39	3		
1990	187	16	<1		
1991	208	12	2		
1992	192	8	1		
1993	136	2	1	0.2	
1994	170	26	2	0.3	
1995	209			0.3	
1996	183	8		1.4	
1997	200	26		0.5	
1998	192	16		0.1	0.1
1999	182	26		0.1	0.4
2000	173	20		0.1	0.2
2001	96	<1		0.3	0.7
2002	141	4	4	0.6	0.2
2003	142	12	10	0.4	0.1
Average	173	15	3	0.4	0.3
0					

Fishery: Commercial Non-Islanders

- Annual Catches:
 - Fairly constant in 90's (except '93)
 - Reduction in 2001 (1/2 of previous year)
 - Graduate increase after 2003
- Month Catches:
 - Peak Sep-Nov for Bramble Cay regions
 - Two peaks for Eastern TS region:
 - Spring and Autum.
- Bramble Cay is major fishing ground and well-know spawning ground

Fishery: Commercial Non-Islanders Efforts

- Number of boats:
 - Constant late 80's and early 90's
 - Drop in late 90's
 - Highest number in 2002 and 2003
- Annual effort:
 - Fluctuate
 - Bramble cay and Eastern TS
- Monthly effort:
 - High level effort between Sep-Nov
 - Bramble cay: Sep-Nov
 - Eastern TS:
 - Sep-Nov
 - Constant within year

Fishery: Commercial Islander

- Annual Catches:
 - 3 islands (Darney, York, Murray)
 - Increase from mid 90's
 - In 2003, large proportion of mackerel catches from Eastern Is.
 - No catch records available for Eastern Is. Prior to 94.
- Monthly Catches:
 - Two peaks:
 - Mar-Jun
 - Sep-Nov

Fishery: Commercial Islander

- Annual effort
 - No obvious pattern
 - No effort records for Eastern Is prior to '94.
- Monthly effort:
 - Two peaks:
 - Mar-Jun: Eastern Is.
 - Oct-Dec: Central Is.

Total Catches

- Combined from all available data sources
- Extrapolated to Virgin biomass (1940) by:
 - 1. GAM: Logbook data and McPherson (1985)
 - 2. Linear Extrapolation: Logbook data

Fishing		Non-Islande	er Torres Strait (Commercial Fisl	nery Total Mackerel	Catch (t)
	year	Mackerel	Dual	Reef	Lobster	Prawn
	1989	184	39	3		
	1990	187	16	<1		
	1991	208	12	2		
	1992	192	8	1		
	1993	136	2	1	0.2	
	1994	170	26	2	0.3	
	1995	209			0.3	
	1996	183	8		1.4	
	1997	200	26		0.5	
	1998	192	16		0.1	0.1
	1999	182	26		0.1	0.4
	2000	173	20		0.1	0.2
	2001	96	<1		0.3	0.7
	2002	141	4	4	0.6	0.2
	2003	142	12	10	0.4	0.1
	Average	173	15	3	0.4	0.3

Catch Rate (CPUE)

- Data: AFMA and QDPI&F non-islander commercial compulsory logbook and Council/community freezer records
 - Fishing over 7 years
- Standardized
 - Environmental factors: SOI, Wind direction composition, SST, Lunar phases
 - Month, region, Fishing type, Vessel
- Method:

Generalize linear mixed effect model

Catch Rate (CPUE)

- Sex-Specific Age structure model
 - Model is developed for NT SPM fishery (Buckworth, 2004)
 - Program: R
 - Input: Total catches, standardized catch rate and bio parameters
 - Output: Extrapolate of biomass to 1940
 - Maximum age: 12
 - Conduct forward projection

Stock Assessment Model

- Model assumption
 - Stock equilibrium in 1940
 - Steepness is 5.2 (rmax is 4.5)
 - No recruitment deviation
 - Constant annual natural mortality (12 years, M=0.37)
 - Constant average fish growth
 - Constant maturity, fecundity, selectivity
 - Accurate total catch and catch rate
 - Std catch rate s index of abundance
 - Single stock
 - Max age is 12 yrs old

 TS stock have similar maturity and fecundity as the stock in Kimberly regions WA.

Sensitivity runs

	Model sensitivity run	M	r _{max}	Age data	CPUE data	Others
	1	0.37	4.5	Yes	Yes	Base case
	2	0.44	4.5	Yes	Yes	
	3	0.30	4.5	Yes	Yes	
	4	0.26	4.5	Yes	Yes	Based on max age 17 years
	5	0.37	9.3	Yes	Yes	
	6	0.44	9.3	Yes	Yes	
	7	0.30	9.3	Yes	No	
	8	0.37	2.4	Yes	Yes	
	9	0.44	2.4	Yes	Yes	
	10	0.30	2.4	Yes	Yes	
	11	0.37	4.5	Yes	Yes	Linear interpolation of catch data
-	Fart 12	0.37	4.5	Yes	No	Linear interpolation of catch data
10	<u></u>	0.37	4.5	Yes	No	GAM fitted catch data

Research Centre

Sensitivity runs

Model sensitivity run	M	r _{max}	Age data	CPUE data	Others
	0.37	4.5	Yes	Yes	Base case
2	0.44	4.5	Yes	Yes	
3	0.30	4.5	Yes	Yes	
4	0.26	4.5	Yes	Yes	Based on max age 17 years
5	0.37	9.3	Yes	Yes	
6	0.44	9.3	Yes	Yes	
7	0.30	9.3	Yes	No	
8	0.37	2.4	Yes	Yes	
9	0.44	2.4	Yes	Yes	
10	0.30	2.4	Yes	Yes	
11	0.37	4.5	Yes	Yes	Linear interpolation of catch data
Fait	0.37	4.5	Yes	No	Linear interpolation of catch data
	0.37	4.5	Yes	No No	GAM fitted catch data

MSE: Forward Projection

- Method: Monte Carlo forward projection by Richard *et al*(1998)
- 20 Years projection (~2023)
- Catch strategies:
 - Constant catches: 100, 150, 200, 250, 300 (t)
 - Catch rate: FMSY, 0.75FMSY, F=0.5M

Notation: MSY, Fmsy, 0.75FMSY, F=0.5m

MSE: Results

- Projected to 2023
- When fixing catches:
 - <150(t): increase
 biomass and
 B₂₀₂₃>MSY
 - >150(t): reduction,
 B₂₀₂₃≤0.2B0
- When fixing catch rate:
 - Increase
 - F=Fmsy, B₂₀₂₃<0.4B₀

MSE: Forward Projection

Catch (tonne)	P(B2023 <bm SY)</bm 	B2023/B0	Catch rate	Catch 2023	P(B ₂₀₂₃ <b _{MSY})</b 	B ₂₀₂₃ / B ₀
100	0.254	0.744				
150	0.381	0.497	Fmsy	187.49	0.349	0.388
200	0.528	0.168	0.75F _m	180.52	0.1433	0.481
250	0.663	0.079	F=0.5	158.97	0.092	0.596
300	0.773	0.054	Μ			

Monitoring: sample sizes

- Method: Randomization (Sumpton and O'Neill, 2000)
- Optimum catches: ~30 from each regions (~80 fish per catches, 2400 individuals)
- During Ash's trip in TS, he collected ~700 samples in the duration ~ 10 days- but may not be cost-effective.

Discussion

Uncertainty

- In the data:
 - Illegal foreign fishing (Taiwanese gillnet)
 - Lack historical data
 - Foreign fishing pressure (PNG)
- For the model: biology, stock structure
- Data Limitation
 - Extend the data too far (~ 3 years data)
 - Missing data (Reef sector, 1993 to 2001)

Research and monitoring Recommendations

- Biology-need to know more
 - Biology of the Species (Growth, Mean age-length, weight, fecundity and maturity etc...)
 - Stock Structure
 - Movement
 - Age structure
- Data/Log book
 - Better database management
 - Lack historical fishing pressure (legal and illegal)
 - Logbook improvement
 - recording by-catch and number of under size fish caught and condition of release may need to be incorporated in future logbooks (Lilly 2000)
 - integration of reef line and Spanish mackerel logbooks
 - Species ID (combine all species of mackerels)
 - Effort Information
 - implementation of Islander logbook program
 - Validation of records (transshipment records vs Logbook)
- Potential of Genetag

Acknowledgement

- CRC Torres Strait
- Mick Mackie of WA fishery
- George Leigh of UQ
- Malcolm Haddon of UTAS
- John Marrington, Anne Shepherd and Thim Skousen of AFMA
- Inoni Harris of QDPI&F
- And many many more...
- Of course, the most important CRC Reef Fishing and fishery team.

Background: Management History

<u>e</u>

Research

Background: Research History

- Limited number of studies on TS Spanish mackerel
 - Stock structure
 - Few preliminary Stock assessment
 - Limited due to data quality
 - Little is known about the population dynamics

Fecundity

Fishery: Commercial Non-Islanders Effort allocation

Mackerel

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Dual

Reef

Reef

Fishing year

Dory days

VB Growth Function

Catch Rates

Model sensitivity run	Y(F _{MSY}) (t)	Y(0.75F _{MSY}) (t)	Y(0.5M) (t)
1	169.16	164.97	146.24
2	195.63	190.86	156.41
3	208.68	201.04	210.16
4	173.28	166.94	181.30
5	146.28	142.70	140.03
6	169.22	165.19	147.13
7	187.24	180.39	221.05
8	211.23	205.95	129.08
9	248.82	242.64	148.09
10	264.42	254.75	147.59
11	182.06	177.60	156.91
12	180.57	176.16	155.34
13	162.42	158.47	139.66

